Molex high OH glass/glass optical fiber will be onboard Earth-sensing ICESat-2
Specialty optical fiber from Molex (Lisle, IL) is being used in NASA’s Ice, Cloud and Land Elevation Satellite-2 (ICESat-2), the company has revealed. The satellite, slated to be launched in 2017 from Vandenberg Air Force Base in California, will measure changes in Earth features, from melting ice sheets to thinning sea ice to growing trees.
Molex's Polymicro Technologies optical fiber will be used onboard ICESat-2 and in ground support equipment (GSE) assemblies that enable integration and testing. The custom fibers are composed of high OH glass/glass fiber, including a glass core, glass cladding layer, acrylate buffer, and a protective nylon outer jacket.
ICESat-2's photon-counting laser altimeter will measure the round trip time of individual laser photons reflecting off the ground and returning to the satellite’s receiver telescopes at a rate of 10,000 laser pulses per second. By matching those times with the satellite’s precise location in space, the mission will determine the elevation of features on Earth.
Earth’s warming climate is shrinking sea ice and melting land ice at the poles and in mountain glaciers, raising sea levels. ICESat-2's ability to precisely measure elevation will allow scientists to see where ice is flowing, melting, or growing and to investigate the global impacts of these changes. It will build on key elevation observations of the cryosphere begun by the original ICESat-1 satellite (2003 to 2009) and the Operation IceBridge airborne campaign (2009 to the present) to provide a continuous record of changes occurring in the 21st century. The 3483-pound ICESat-2 will have a design life of 3 years and enough fuel to operate for 7 years
As an example of another space project incorporating Molex optical fiber into its hardware, the Mars Rover Curiosity includes an armor-jacketed fiber-optic assembly built with Molex Polymicro Technologies FVA300330500 (High OH) fiber. The assembly connects to the body-mast unit on the vehicle’s ChemCam active remote sensing instrument.
For more information on Molex Polymicro Technologies optical fiber, see www.molex.com/polymicro.
Source: Molex