Luminescent proteins provide color for ecological and cheap biodisplays

Jan. 19, 2017
Luminescent proteins form both the white-light emitter and the color filters.
Image of a color filter with green and red luminescent proteins printed on a microgrid structure. (Credit: Katharina Weber)


Liquid crystal displays (LCDs), which are usually lit by inorganic white LEDs, have several inconveniences: the high cost of the color filters, limited brightness and contrast levels, and the difficulty of recycling materials used to make them. In response to these problems, scientists at the University of Erlangen-Nurnberg (Erlangen, Germany) have designed a new display made of natural materials: luminescent proteins, which the scientists say will enable, in the not too distant future, the manufacturing of these devices to be done ecologically and at a low cost.

The proteins are used in two parts of the display. The first component, in the display's backlighting, is a bio-LED emitting white light via different-colored luminescent proteins. "The proteins have a photoluminescence quantum yield of more than 75%," says Rubén D. Costa, one of the researchers. "High efficiency is guaranteed. In addition, they have a low emission bandwidth (30 to 50 nm), ensuring that high color quality and degradation does not produce significant color changes."

The second protein component in the display is the the color filter.1 Here, the proteins are stored in a polymeric matrix with micrometric resolution using a 3D printing technique, which enables them to maintain their luminescent properties and optimum stability.

"This color filter meets the necessary requirement to improve displays currently being used in terms of contrast and brightness within quality standards demanded across the market," says Costa. "This new material will allow for the development of energy-efficient biodisplays for TVs and mobile telephones with low production costs, high image quality, and ecological sustainability. Also, these filters are not rigid, allowing them to be used in devices which are flexible and light."

Source: http://www.alphagalileo.org/ViewItem.aspx?ItemId=171737&CultureCode=en

REFERENCE:

1. Lucas Niklaus et al., Advanced Functional Materials 27 (Issue 1), 3 January 2017; doi: 10.1002/adfm.201770002

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!