Electrically pumped organic laser diode has low threshold current density

Dec. 19, 2017
Organic semiconductor laser with a planar half-wave microcavity emits at 622 nm.

Threshold and light amplification behavior in organic semiconductor lasers developed at Changchun Institute of Optics. (Image © Science China Press)

Semiconductor lasers with organic molecular structures can produce color covering the entire visible spectrum and can potentially be easily mass-produced via solution processing. Organic lasers are small-sized, flexible, tunable, and easily integrated into devices for potential application in integrated photonics, visible light communication, sensors, and medical and scientific research. However, traditionally, organic semiconductor lasers have been optically rather than electrically pumped. Due to large optical losses from the device structure and a complex excited-state process, electrical pumping (electrical injection) of an organic laser diode conventionally requires an ultrahigh threshold current to achieve net gain, as most organic materials have poor electrical conductivity.

Now, Xingyuan Liu's research team at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (Changchun, China), has developed an organic quasi-continuous-wave (QCW) laser diode with a low threshold current density.1 Based on cavity quantum electrodynamics, the team determined that a planar half-wave microcavity of wavelength size can effectively control spontaneous emission and stimulated emission characteristics of organic semiconductors. The researchers overcame the problem of high cavity loss and designed and fabricated a high quality factor (Q) microcavity organic laser device, clearly observing gain amplification phenomenon under quasi-CW operation.

The organic laser uses a small-molecule doping system (Alq:DCJTI) as the gain medium; the laser peak wavelength is 621.7 nm and does not change with current increase. The threshold current density is about 1.8 mA/cm2, above which the spectral linewidth is narrowed to 0.835 nm. The organic semiconductor optical amplifier shows a maximum optical gain of 5.25 dB under 16 mA/cm2 electrical pumping. Obtaining a low laser threshold is an important step for the practical application of organic lasers, which will bring a room-temperature CW lasing in the near future. This indicated to the researchers that optical loss in the high-Q organic semiconductor microcavity was significantly reduced and that the underlying physics deserves further investigation.

REFERENCE:

1. Jie Lin et al., Science Bulletin (2017); https://doi.org/10.1016/j.scib.2017.12.010.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!