Petawatt-class laser to aim for four-wave mixing in a vacuum

April 1, 2006
Researchers from Umea University (Umea, Sweden) and Rutherford Appleton Laboratory (Oxfordshire, England) have advanced a proposal for exploring the laws of quantum electrodynamics (QED) by performing a four-wave mixing experiment in a vacuum.

Researchers from Umea University (Umea, Sweden) and Rutherford Appleton Laboratory (Oxfordshire, England) have advanced a proposal for exploring the laws of quantum electrodynamics (QED) by performing a four-wave mixing experiment in a vacuum. They propose colliding three laser pulses to stimulate emission of a fourth with a new propagation direction and wavelength, due to elastic photon-photon scattering.

According to QED, such scattering can occur in a vacuum because of the interactions of virtual electron-positron pairs. But doing so at detectable levels would require an exceptionally powerful laser source with a fast pulse-repetition rate. The researchers intend to use the high-repetition-rate petawatt-class Astra-Gemini laser at Rutherford Appleton Laboratory in 2007 to generate two independently configurable 0.5-PW, 800-nm pulses with 15 J of energy and focused intensities in excess of 1022 W/cm2, at a pulse-repetition rate of one shot per minute. In contrast with previous 2-D beam-mixing proposals, this team will attempt a 3-D process by frequency doubling and splitting one of the laser beams into two. The researchers expect to create 0.07 new photons per pulse at a wavelength of about 267 nm. Contact Mattias Marklund at [email protected].

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!