Bacteriorhodopsin optically switches near-IR light

Feb. 1, 2007
Bacteriorhodopsin (bR) is a photochromic biological molecule that has promise for use in all-optical switches and other photonic components; however, bR is transparent in the all-important telecom band (1310-1550 nm), which seemingly eliminates it from contention as a base for optical telecom devices.

Bacteriorhodopsin (bR) is a photochromic biological molecule that has promise for use in all-optical switches and other photonic components; however, bR is transparent in the all-important telecom band (1310-1550 nm), which seemingly eliminates it from contention as a base for optical telecom devices. But researchers at the Rowland Institute, Harvard University (Cambridge, MA) have created a bR-based optical switch that routes a near-IR (1311 nm) beam with the application of a low-power green (532 nm) pump.

A 300 µm silica microsphere is coated with bR, suspended between two optical fibers, and optically coupled to them. When 200 µW of pump light is applied through one of the fibers, the evanescent waves in the sphere’s whispering-gallery modes interact with the bR, causing a resonant-frequency shift in the cavity that switches the incoming near-IR probe light from one fiber port to another. Switching on is fast, but switching off is much slower (with a time constant of 11 s). Speedier switching is possible with other photochromic organic materials such as diarylethene. Contact Frank Vollmer at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!