Photoaligned liquid-crystal polymers create vortex retarders

March 1, 2008
Optical designers require radially and azimuthally polarized beams to improve performance of systems like confocal microscopes and lithography systems.

Optical designers require radially and azimuthally polarized beams to improve performance of systems like confocal microscopes and lithography systems. Scientists at JDSU (Santa Rosa, CA) and the University of Arizona (Tucson, AZ) recently reported the use of photoaligned liquid-crystal polymers (LCP) to develop vortex retarders—monolithic components that have constant retardance but a fast axis rotating around a point. To create half-wave vortex retarders with a continuously varying fast axis of m = 1, 2, 3 modes at 550 nm, the researchers fabricated samples on 2 in. squares of Corning 1737F glass with a broadband antireflection coating and a photoalignment layer set via exposure to linearly polarized ultraviolet light. The thickness of the LCP determined the retardance value. The team analyzed the elements theoretically and experimentally by comparing the expected space-variant Mueller matrix of each component to the measured one. The measured and calculated point-spread matrix showed close agreement, and the samples showed excellent retardance uniformity of 98.5%. Such polarization components of single or higher orders are useful in creating nondiffracting Bessel fields, which can be used to enlarge the particle-trapping region of optical tweezers. Contact Scott McEldowney at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!