Crystal stores light pulses and routes them all-optically

Jan. 1, 2009
Researchers at Jilin University (Changchun, China) and the Chinese Ministry of Education (Beijing, China) are not only using electromagnetically induced transparency (EIT) to drastically slow a signal light pulse within a crystal to store it; they are speeding it up again using a phenomenon that optically splits the pulse into two pulses, each propagating in a different, adjustable direction.

Researchers at Jilin University (Changchun, China) and the Chinese Ministry of Education (Beijing, China) are not only using electromagnetically induced transparency (EIT) to drastically slow a signal light pulse within a crystal to store it; they are speeding it up again using a phenomenon that optically splits the pulse into two pulses, each propagating in a different, adjustable direction. The phenomenon could have practical application in all-optical or quantum-information networks. In addition, the crystalline host is easier to work with than the atomic gases often used for EIT.

A signal pulse from a dye laser emitting at 606 nm enters the crystal, which is 0.05% praseodymium-doped yttrium orthosilicate held at 3.5 K. Another pulse, slightly wavelength-shifted, slows the signal pulse. After a storage time of 10 µs, two trigger pulses coming from other directions get the signal pulse back up to speed, but the phase matching between the pulses also creates two signal pulses from one. Changing the intensity of the trigger pulses changes the output-signal pulse directions; such manipulation can potentially allow information to be controllably distributed between different light channels. Contact Hai-Hua Wang at [email protected].

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!