Star power comes to Earth

Nov. 1, 2009
Though not yet running at full capacity, the National Ignition Facility at Lawrence Livermore National Laboratory (Livermore, CA) is now operational.

Though not yet running at full capacity, the National Ignition Facility at Lawrence Livermore National Laboratory (Livermore, CA) is now operational. It has taken 15 years and $3.5 billion to build the huge 192-beam laser system, which is now on a gradual ramp toward its full design output of 1.8 MJ of ultraviolet pulse energy. All being well, the laser will achieve ignition by 2012 (the interior of the NIF target chamber is featured on this month’s cover). The ultimate success of NIF will depend among other things on the materials science around its optics—with energy densities of up to 8 J/cm2, optical damage has been problematic and remains a concern (see Photonic Frontiers).

You can find out more about NIF and its future at the 2010 Lasers & Photonics Marketplace Seminar. In his keynote presentation, “Bringing Star Power to Earth,” astronaut Dr. Jeff Wisoff will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF. The seminar is held in conjunction with Photonics West next January in San Francisco, CA. Visit www.marketplaceseminar.com for more information.

Energy density isn’t the only performance constraint that optical materials scientists must contend with. Relatively limited choices for substrates and coating materials make the ultraviolet, especially at shorter wavelengths, uniquely challenging. But recent developments in optical materials have resulted in new components with attractive properties at “near-UV” wavelengths, thereby providing a boost to applications in this region of the spectrum.

The application of photonics to the life sciences—biophotonics—comes with its own set of constraints. Specific techniques include microscopy and flow cytometry, among others, and all require light sources at many different wavelengths. The relatively recent development of compact, inexpensive solid-state lasers capable of emitting at a variety of visible wavelengths has dramatically expanded bioanalytical capabilities. Among these new devices is a fiber-based laser whose visible output can be continuously tuned across 160 nm (see "Fully tunable visible laser source is valuable for biophotonics").

About the Author

Stephen G. Anderson | Director, Industry Development - SPIE

 Stephen Anderson is a photonics industry expert with an international background and has been actively involved with lasers and photonics for more than 30 years. As Director, Industry Development at SPIE – The international society for optics and photonics – he is responsible for tracking the photonics industry markets and technology to help define long-term strategy, while also facilitating development of SPIE’s industry activities. Before joining SPIE, Anderson was Associate Publisher and Editor in Chief of Laser Focus World and chaired the Lasers & Photonics Marketplace Seminar. Anderson also co-founded the BioOptics World brand. Anderson holds a chemistry degree from the University of York and an Executive MBA from Golden Gate University.    

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!