Laser-trapped microsphere becomes surface-measuring probe

March 1, 2009
A surface probe tipped with a microsphere can be scanned across the surface of a microlens or other microscale component to measure its 3-D coordinates, determining heights to nanometer-scale accuracies.

A surface probe tipped with a microsphere can be scanned across the surface of a microlens or other microscale component to measure its 3-D coordinates, determining heights to nanometer-scale accuracies. However, the radius of the microsphere is large enough to cause height errors when it is scanned across a sloped surface. Scientists at Osaka University (Osaka, Japan) have developed a completely different way to manipulate a microsphere that also allows the slope of the surface to be measured.

An 8-µm-diameter sphere, made of fused silica, is held in position, not by a mechanical probe, but instead is laser-trapped via the single-beam-gradient technique. The trapping laser, a 300 mW TEM00 Nd:YAG laser, is circularly polarized; a second laser, a 628 nm HeNe laser, is used to measure the probe position in combination with a position-sensitive detector. The focal point of the trapping laser is driven in a circle by an acousto-optic deflector, causing the microsphere to orbit circularly in free space. When brought near a surface that is perpendicular to the focal plane, the orbit of the microsphere becomes ellipsoidal with its major axis parallel to the surface; in this way, both surface position and slope can be determined. Contact Masaki Michihata at [email protected].

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!