‘Tweeter’ and ‘woofer’ deformable mirrors to work together on GPI

May 1, 2009
The Gemini Planet Imager (GPI) is an adaptive-optics instrument now under construction that will be installed at Gemini South, an 8 m telescope located atop Cerro Pachon in the Chilean Andes.

The Gemini Planet Imager (GPI) is an adaptive opticsinstrument now under construction that will be installed at Gemini South, an 8 m telescope located atop Cerro Pachon in the Chilean Andes. The GPI will enable imaging of extrasolar giant planets in Jupiter-like orbits. The instrument’s adaptive optics include high-order “tweeter” and low-order “woofer” deformable mirrors, which will correct for atmospheric turbulence by producing a Strehl ratio of greater than 90%. But to do so, the microelectromechanical-systems (MEMS)-based tweeter must have enough stroke (physical travel) to handle the high-order atmospheric turbulence.

Scientists at the National Science Foundation Center for Adaptive Optics (University of California, Santa Cruz) have lab-tested a 1024-actuator 1.5-µm-stroke MEMS device to see whether and how much it saturated under realistic conditions. When placed under the influence of a software-generated Kolmogorov turbulence screen, the tweeter by itself saturated 4% of the time; in combination with a woofer, the tweeter saturated less than 1% of the time. However, mid-to-high-spatial-frequency stroke in the tweeter saturated more than expected, leading the researchers to conclude that analytical studies underpredict the MEMS stroke requirements, and thus empirical studies are key. Contact Katie Morzinski at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!