Ge-on-Si direct-band-gap LED lays groundwork for group-IV laser

Aug. 1, 2009
A 1.6-µm-emitting germanium-on-silicon (Ge-on-Si) LED developed by researchers at Stanford University (Palo Alto, CA) could be the key to a Si-compatible group-IV semiconductor laser (useful for optical interconnects and other integrated Si photonics devices).

A 1.6-µm-emitting germanium-on-silicon (Ge-on-Si) LED developed by researchers at Stanford University (Palo Alto, CA) could be the key to a Si-compatible group-IV semiconductor laser (useful for optical interconnects and other integrated Si photonics devices). The device, an n+/p homojunction LED, was fabricated using an in situ doping method. Lattice mismatch between Ge and Si provides compressive strain on the Ge, creating a direct band gap; doping with high concentrations of phosphorous and boron shifts the emission wavelength to the relevant 1.6 µm region.

Click here to enlarge image

One interesting effect occurring in the new device is that as its temperature increases, so does its output intensity (contrary to what happens in ordinary LEDs). The reason is that at low temperatures, the so-called Fermi-Dirac electron distribution, which determines which electrons contribute to the emission of light, resembles a step function with the step positioned just in the wrong place. At high temperatures, however, the electron distribution gets “smeared out,” with many electrons occupying states that allow them to radiate light. The researchers tested the LED at temperatures ranging from 50 K to 298 K, confirming the effect. Creating a laser would require an even higher doping to achieve gain, say the researchers. Contact Szu-Lin Cheng at [email protected].

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!