Tiniest two-photon MEMS microscope performs brain imaging

Aug. 1, 2009
Researchers at Stanford University (Stanford, CA) have developed an incredibly small two-photon microscope imager that uses a microelectromechanical systems (MEMS) laser-scanning mirror to image (v) the brain of a mouse.

Researchers at Stanford University (Stanford, CA) have developed an incredibly small two-photon microscope imager that uses a microelectromechanical systems (MEMS) laser-scanning mirror to image (v) the brain of a mouse.

Previously devised miniature endoscopes either used a double-clad optical fiber to route fluorescence signals reflected off a MEMS mirror (reducing robustness to light scatter in cases of deep-tissue imaging) or included only spatially filtered images; neither method was shown to be capable of live imaging or of having sufficient sensitivity for fast physiological measurements. Alternatively, the tiny two-photon MEMS imager (only 2.9 g in mass) from Stanford uses a hollow-core bandgap fiber to deliver ultrashort pulses from a tunable Ti:sapphire laser to the microscope. The light is collimated and reflects off the 1 × 1 mm MEMS scanner into an optical assembly comprised of four gradient-index lenses and a dichroic microprism that is focused to the specimen. The full aperture of emissions from the specimen (in this case, the neocortical capillaries and erythrocyte flow in the live brain of an anesthetized mouse) passes back through the optics and into a polymer fiber to a photomultiplier tube for analysis. Illumination power was 27 mW at the sample; eight frames acquired over 2 s at 4 Hz were averaged to obtain the microvasculature images. Contact Mark Schnitzer at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!