Boron nitride nanotube film emits light at 225 nm

Nov. 1, 2010
A deep-ultraviolet (DUV) emitter has been created from a film of boron nitride nanotubes (BNNTs) by scientists at Deakin University (Waurn Ponds, Australia), the Australian National University (Canberra, Australia), and the National Synchrotron Radiation Research Center (Hsinchu, Taiwan).

A deep-ultraviolet (DUV) emitter has been created from a film of boron nitride nanotubes (BNNTs) by scientists at Deakin University (Waurn Ponds, Australia), the Australian National University (Canberra, Australia), and the National Synchrotron Radiation Research Center (Hsinchu, Taiwan). The material, which emits in a band around 225 nm (5.51 eV), could find use as a nanosized DUV light source for upcoming micro- and nanophotonic applications.

A boron-ink-coating method was used to fabricate high-purity BNNT films with very uniform properties on silicon dioxide coated silicon wafers; the material was then annealed in vacuum. The resulting BNNTs had diameters of 2-10 nm and tube walls with two to ten molecular layers. Higher-energy excitation photons from a vacuum-ultraviolet beamline created photoluminescence in the BNNTs for the experiment. The emission full-width at half-maximum (FWHM) was 30.6 nm at a temperature of 10K, and 31.8 nm at 293K. Good crystallinity is essential to achieve emission in a single strong band; BNNTs with larger diameters (40-80 nm) and more layers had weak DUV emission. In addition, omitting the vacuum-annealing step degraded the spectrum-a characteristic that the BNNTs share with carbon nanotubes. Contact Lu Hua Li at [email protected].

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!