Polymer μFPI beats semiconductor-based designs for biosensing

Nov. 1, 2010
When used in a biosensing application, a polymer micromachined Fabry-Perot interferometer (μFPI) developed by researchers at Louisiana Tech University (Ruston, LA) has an approximate 20X improvement in free-spectral range (FSR), 2X improvement in finesse, and 4X improvement in contrast of optical transducing signals compared to a traditional semiconductor-based μFPI.

When used in a biosensing application, a polymer micromachined Fabry-Perot interferometer (μFPI) developed by researchers at Louisiana Tech University (Ruston, LA) has an approximate 20X improvement in free-spectral range (FSR), 2X improvement in finesse, and 4X improvement in contrast of optical transducing signals compared to a traditional semiconductor-based μFPI.

Traditional μFPI biochemical sensors fabricated from silicon, polysilicon, or other semiconductor thin films and operated using lasers suffer from limited sensing areas, limited depth penetration of the sensing light, and limited intensity of the transducing signal due to light losses at the FPI plate/air interface. The Louisiana Tech biosensor instead uses a polydimethylsilicone (PDMS) microfluidic chip bonded to a gold-coated nanopore layer inside a μFPI cavity and a lower-cost broadband white-light source. The 50 nm diameter nanopores increase the sensing area compared to traditional devices and allow the source to penetrate to a depth of 3 μm within the structure. Reflected light is analyzed to observe interference-fringe shifts corresponding to refractive-index changes caused by the substance being sensed. The nanopore structures could be modified to possibly enable single-molecule sensing. Contact Long Que at[email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!