SHG light from graphene shows whether it's single- or multilayer

Feb. 1, 2010
Light can serve as a probe of material structure, sometimes as a result of nonlinear effects.

Light can serve as a probe of material structure, sometimes as a result of nonlinear effects. Scientists at the University of Toronto (Toronto, ON, Canada) are using optical second-harmonic generation (SHG) by graphene to determine whether the graphene is single- or multilayered. The technique is useful to physicists, material scientists, and nanotechnologists, and also can potentially study other effects on graphene such as effects of external electric fields and of adsorbates.

A titanium:sapphire laser provided 1.0 nJ, 150 fs pump pulses at an 800 nm wavelength; the pulses were attenuated to 0.06 nJ so as not to damage the graphene. Layers of graphene were mounted on a 300 nm film of silicon dioxide on a silicon substrate, which was in turn mounted on rotation and translation stages. The p-polarized light was focused on the graphene at a 60° angle, producing a 7 × 10 µm spot. P-polarized 400 nm SHG light was optically filtered and detected by a photon-counting photomultiplier tube. When the signal as a function of azimuth angle showed a four-lobed pattern characteristic of the substrate, the researchers knew the graphene was single layer; if the pattern was three-lobed (characteristic of graphene), then more than one layer was present. Contact Jesse Dean at [email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!