Biological protein can self-assemble into tiny nanolasers and other photonic devices

July 1, 2010
Found in the cells of nearly every living thing, the protein clathrin forms into tripod-shaped subunits called triskelia that sort and transport chemicals into cells by folding around them.

Found in the cells of nearly every living thing, the protein clathrin forms into tripod-shaped subunits called triskelia that sort and transport chemicals into cells by folding around them. While multiple triskelia can self-assemble into cage structures with 20 to 100 nm diameters for applications in drug delivery and disease targeting, scientists at ExQor Technologies (Boston, MA) see a host of other nanoscale electronic and photonic applications for clathrin that could rival those for silicon or other inorganic devices, including a bio-nanolaser as small as 25 nm.

A spherical scaffold of clathrin subunits forms ExQor's patented clathrin bio-nanolaser. How can a chromophore so small (25 to 50 nm in size) serve as a cavity for visible light? ExQor says it forces chromophore-microcavity interaction, and this combination possesses a high-enough Q for lasing. In this way, the bio-nanolaser produces self-generated power in a sub-100-nm diameter structure for potential applications in illuminating and identifying (or possibly destroying) particular biological tissues by functionalizing the structure with antibodies or other agents that can target particular pathogens or even certain cells. In addition, ExQor says quantum-mechanical effects could be used that might enable unique, spin-based, self-assembling nanoelectronic/nanophotonic devices and even bio-based quantum computers composed of clathrin protein. Contact Franco Vitaliano at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!