A single view yields 3D x-ray diffractive images

Aug. 1, 2010
Researchers at the University of California–Los Angeles (Los Angeles, CA), the University of Colorado at Boulder (Boulder, CO), and the University of North Texas (Denton, TX) have for the first time demonstrated ankylography–3D coherent x-ray diffractive imaging that could find applications in imaging thick or embedded structures where slicing for electron or confocal microscopy is not feasible.

Researchers at the University of California–Los Angeles (Los Angeles, CA), the University of Colorado at Boulder (Boulder, CO), and the University of North Texas (Denton, TX) have for the first time demonstrated ankylography3D coherent x-ray diffractive imaging that could find applications in imaging thick or embedded structures where slicing for electron or confocal microscopy is not feasible. From the Greek words "ankylos" and "graphein," ankylography translates to "curved writing" and can produce nanometer-resolution images in 3D from a single, intense femtosecond x-ray pulse from a free-electron laser.

Using a 47 nm tabletop soft x-ray laser spatially filtered to produce a beam with full spatial and temporal coherence, the research team focused the beam using two multilayer mirrors onto a test sample. The researchers then measured the x-ray diffraction pattern on a large-area x-ray CCD a mere 1.7 cm away. Because the high-numerical-aperture diffraction pattern recorded on a flat CCD detector is distorted, mapping this flat pattern onto a curved Ewald sphere reveals 3D information for the object since the sphere is a hemispherical slice through the 3D reciprocal space of the test object. Using a phase-retrieval algorithm, a 3D rendering of a 7 µm tall stick figure cut from 100 nm thick gold on 100 nm thick silicon nitride was recovered; however, the technique requires accuracy improvements before it can be practically applied. Contact Jianwei Miao at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!