VECSEL produces 2.1 W of single-frequency, low-noise light

Aug. 1, 2010
An optically pumped room-temperature vertical-external-cavity surface-emitting laser (VECSEL) developed by researchers at the Institut d'Electronique du Sud, Université Montpellier (Montpellier, France) and the Laboratoire de Photonique et Nanostructures (Marcoussis, France) reaches an output of 2.1 W of low-noise (37 kHz linewidth), single-frequency TEM00 operation with a beam quality (M2) of 1.2 at a wavelength of 1015 nm.

An optically pumped room-temperature vertical-external-cavity surface-emitting laser (VECSEL) developed by researchers at the Institut d'Electronique du Sud, Université Montpellier (Montpellier, France) and the Laboratoire de Photonique et Nanostructures (Marcoussis, France) reaches an output of 2.1 W of low-noise (37 kHz linewidth), single-frequency TEM00 operation with a beam quality (M2) of 1.2 at a wavelength of 1015 nm. The high beam quality was achieved even though the laser was pumped with a low-beam-quality, multimode fiber-coupled, angled diode-laser beam (at 808 nm).

The VECSEL contains six strained indium gallium arsenide/gallium arsenide phosphide quantum wells, a high-reflectivity Bragg mirror, an antireflection coating, a thermoelectric cooler (TEC), and an external flat dielectric mirror. The cavity length could be varied between 3 and 10 mm; maximum power was achieved for a 5 mm cavity length and 8 W of pump power. The laser structure formed a thermal lens under operation, but the cavity operated as a single-transverse-mode optical resonator. The researchers believe that the laser's noise and linewidth can be reduced further by using electrical pumping or low-noise optical pumping, and also that larger active diameters will lead to higher output powers. Contact Arnaud Garnache at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!