Multiphase piezo nanopositioner dramatically reduces stick-slip aberrations

Sept. 1, 2010
Engineers at Micos USA (Irvine, CA) have developed a multiphase piezo motion technology that significantly reduces the conventional "stick-slip" operation of nanopositioning applications.

Engineers at Micos USA (Irvine, CA) have developed a multiphase piezo motion technology that significantly reduces the conventional "stick-slip" operation of nanopositioning applications. Conventional piezo motors often use stick-slip inertial motion in which the piezo element is connected to an oscillating friction element that moves the sliding friction element forward when the piezo extends due to an applied voltage. When the piezo is fully extended (usually below 1 μm), a fast voltage transition is applied that quickly contracts the piezo, resulting in a fast backward motion of the oscillating friction element during every slip phase, which occurs approximately every 500 nm. The sliding friction element (moving part of the actuator) follows the backward movement to some degree during the slip phase, which results in poor velocity regulation, induced vibration into the system, and lost motion.

The multiphase piezomotor from Micos uses at least two piezos and friction elements that move in unison but slip at different times, minimizing the retract motion induced by the slip forces and significantly reducing or even eliminating altogether the backward motion during the slip phase. For example, one device has 12 mm travel with better than 1 nm motor resolution, 5 nm linear-encoder resolution, and 1 kg horizontal-load capability. Contact Manfred Schneider at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!