Photoluminescence-based detector measures pulse energy of x-ray FELs

Sept. 1, 2010
X-ray free-electron lasers (FELs) promise improved x-ray imaging and nonlinear matter interaction and time-resolved studies; however, their short, intense, small-wavelength pulses are difficult to measure.

X-ray free-electron lasers (FELs) promise improved x-ray imaging and nonlinear matter interaction and time-resolved studies; however, their short, intense, small-wavelength pulses are difficult to measure. The pulse energy of the soft-x-ray FEL source in Hamburg, Germany called FLASH (with a 6-48 nm wavelength range) has been measured by applying an electric field across a rare-gas cell that produces strong electron and ion currents at low pressures and a correspondingly strong signal that can be detected with Faraday cups. A simpler detection technique has recently been developed by researchers at Lawrence Livermore National Laboratory (Livermore, CA) and Stanford University (Stanford, CA), who both modeled and experimentally demonstrated an electrode-less photoluminescence-based pulse-energy detector. It has been successfully used with the hard-x-ray Linac Coherent Light Source at Stanford and produced a strong signal.

The simple and inexpensive detector infers the total pulse energy from the UV radiation generated by passing the FEL beam through a weakly absorbing gas (in this case, nitrogen gas, since its UV luminescence behavior is very well characterized). The gas is contained in a 30 cm long, 8 cm diameter cylinder at a pressure between 0.1 and 2 Torr–adequate to overcome system noise. The FEL beam induces photoionization of the nitrogen gas, creating UV photons and measurable luminescence that can be quantified and correlated with total laser pulse energy. Contact Stefan P. Hau-Riege at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!