Deep-well structures in mid-IR QCLs improve efficiency

Jan. 1, 2011
The active regions of quantum-cascade lasers (QCLs) are made of a superlattice of quantum wells (QWs) and barrier layers.

The active regions of quantum-cascade lasers (QCLs) are made of a superlattice of quantum wells (QWs) and barrier layers. In conventional QCLs, the barriers all have the same alloy composition. For QCLs emitting continuous-wave (CW) in the 4.5 to 5.0 μm range, this results in thermally activated electron leakage from the upper laser level to the continuum, and low maximum wall-plug-efficiency values of around 12% at room temperature—short of the theoretical 28%. Researchers at the University of Wisconsin (Madison, WI), Lehigh University (Bethlehem, PA), and the Naval Research Laboratory (Washington, DC) say that this problem can be corrected by using metal-organic chemical vapor deposition to grow QWs and barriers that vary in composition.

The researchers fabricated 4.8-μm-emitting indium-phosphide-based QCLs using the deep (highly strained) well approach, using tall barriers in and around the active region for strain compensation. In addition, the conduction-band edges of the injector and extractor regions were tapered. The characteristic temperature coefficient T0 for the threshold current density Jth was boosted from 143 K for conventional QCLs to 253 K over the 20°–90°C temperature range. The design should allow single-facet room-temperature CW wall-plug efficiencies of up to 22%. Contact Dan Botez at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!