Pixtronix micro-shutter MEMS display consumes much less power

Jan. 1, 2011
Compared to conventional thin-film-transistor liquid-crystal (TFT LCD) or active-matrix organic light-emitting diode (AMOLED) displays, a new digital micro-shutter (DMS) display from Pixtronix (Andover, MA) consumes one-quarter of the power while delivering equivalent image quality.

Compared to conventional thin-film-transistor liquid-crystal (TFT LCD) or active-matrix organic light-emitting diode (AMOLED) displays, a new digital micro-shutter (DMS) display from Pixtronix (Andover, MA) consumes one-quarter of the power while delivering equivalent image quality.

Using standard TFT LCD manufacturing equipment, processes, and materials, a microelectromechanical systems (MEMS) shutter is built on top of an active backplane and a simple aperture plate replaces the color filter. Essentially, the DMS technology is made of four key elements: a digital micro-shutter (laterally translating) element at the heart of each pixel that uses a patented zipping actuator; the use of field-sequential color with color-change frequencies greater than 1 kHz to avoid flicker or color breakup; an optical architecture with a light-recycling LED backlight that allows an 11.5% aperture-ratio display to transmit 60% of the light to the viewer (10 times the output of liquid-crystal displays); and a digital-backplane circuit. Pixtronix has announced partnerships with both Hitachi Displays (Japan) and Chimei Innolux (Taiwan) and has developed 2.5 in. QVGA display prototypes that can run 60 Hz videos, achieve a 135% NTSC color gamut, have a 170° viewing angle and 24 bit color, and consume less than 50 mW of backlight power. Contact Mark Halfman at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

From Life Sciences to Industry: Advancements in Optical Filters

Aug. 1, 2024
Optical filters are increasingly used in VR, advanced medical imaging, environmental monitoring, and satellite communications. This whitepaper highlights Chroma’s technical advancements...

Optical Filters for Semiconductor Inspection

Aug. 1, 2024
At Chroma Technology, we understand that the quality of your optical filters directly impacts the accuracy of your inspection processes and ultimately, the performance of your...

Optical Filters for Astronomy Applications

Aug. 1, 2024
At Chroma we manufacture the highest quality, narrow-band spectral line filters for astronomy. Our narrow passbands provide the precision and accuracy to ensure your spectral ...

Chroma is a leading manufacturer of highly precise optical filters

Aug. 1, 2024
Chroma is known for exceptional customer service and technical support. They produce durable, high-performance optical filters with a spectral range of 200-3000nm, serving diverse...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!