Cylindrical luminescent solar concentrators are more efficient if they're hollow

Dec. 7, 2011
Luminescent solar concentrators in the form of hollow cylinders have higher absorption of solar radiation and lower self-absorption than those shaped as planes or solid cylinders, say scientists at the University of California–Merced.
A hollow cylindrical luminescent concentrator has a higher optical efficiency than a solid cylindrical or flat rectangular version
A hollow cylindrical luminescent concentrator has a higher optical efficiency than a solid cylindrical or flat rectangular version

Luminescent solar concentrators in the form of hollow cylinders have higher absorption of solar radiation and lower self-absorption than those shaped as planes or solid cylinders, say scientists at the University of California–Merced. In a luminescent solar concentrator, solar radiation is absorbed by a fluorescent material in an otherwise transparent material; the material downconverts the light, emitting it so the light (mostly) totally internally reflects and is concentrated and collected by solar cells. Self-absorption (reabsorption of the downconverted light before it reaches the solar cells) is one of the main obstacles to wider use of this type of solar concentrator, another being degradation of the downconversion material.

The researchers used near-infrared lead sulfide quantum dots (QDs) as the downconverter and polymethylmethacrylate (PMMA) as the host. They fabricated examples of the three geometries using QD concentrations from zero to 100 micromolar (μM), with optical efficiencies scaling approximately linearly with QD concentration for all geometries, and peaking at about 7%, 4%, and 3% respectively for the hollow cylinder, solid cylinder, and flat rectangle all at a 100 μM QD concentration (black data points). However, at QD concentrations greater than 60 μM, the output showed degradation when retested after six months (red data points), possibly as a result of interdot energy-transfer events causing a net increase in overall luminescence quenching. Other types of QDs could boost the efficiency by several times. Contact Sayantani Ghosh at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!