Researchers demonstrate first 3D photonic-crystal nanocavity laser

Feb. 1, 2011
Although lasing has been demonstrated in two-dimensional (2D) photonic-crystal nanocavities, researchers at the University of Tokyo have for the first time demonstrated lasing in three-dimensional (3D) photonic-crystal nanocavities.

Although lasing has been demonstrated in two-dimensional (2D) photonic-crystal nanocavities, researchers at the University of Tokyo (Tokyo, Japan) have for the first time demonstrated lasing in three-dimensional (3D) photonic-crystal nanocavities. The breakthrough is the first step toward realizing 3D integrated circuits and offers a new means to study light-matter interactions in 3D cavities.

The researchers overcame previous hurdles in building a high-Q, 3D cavity with a complete photonic bandgap by fabricating a 25-layer woodpile structure that includes gallium-arsenide-based 2D layers and an active layer composed of three layers of indium arsenide quantum dots, each with a dot density of approximately 4 × 1010 cm-2. This active layer creates a 1.15 × 1.15 μm embedded defect in the 3D structure that—together with an optimized number of 12 upper gallium arsenide layers to maximize Q to a value of 38,500—confines the cavity modes in a complete photonic bandgap between 1085 and 1335 nm. When pumped by 8 ns pulses with 150 mW peak pulse power at a 25 kHz repetition rate from a 905 nm laser, the 3D photonic-crystal nanocavity lased at approximately 1197 nm. Contact Yasuhiko Arakawa at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!