HgTe-HgCdTe superlattice photodetector has high response in LWIR

March 1, 2011
A superlattice of mercury telluride-mercury cadmium telluride (HgTe-HgCdTe) contains alternating layers of the two materials only nanometers thick; when used for IR photoconductive optical detectors, such a superlattice can have high absorption and good control of the cut-off wavelength.

A superlattice of mercury telluride-mercury cadmium telluride (HgTe-HgCdTe) contains alternating layers of the two materials only nanometers thick; when used for IR photoconductive optical detectors, such a superlattice can have high absorption and good control of the cut-off wavelength. But until now there has been little data on the fabrication and use of such detectors in the longwave IR (LWIR). Researchers at the University of Western Australia (Crawley, Australia) and the Physikalisches Institut der Universität Würzburg (Würzburg, Germany) have fabricated two different examples of such detectors by molecular-beam epitaxy, comparing them to a non-superlattice detector of HgCdTe used as a control.

The differences in the two superlattice detectors were in the number of layers (120 versus 100) and the details of the elemental proportions in the layers under test. one of the superlattice detectors (Q1104) showed higher spectral quantum efficiencies as a function of thickness compared to the simple HgCdTe detector, partially because its absorption coefficient was more than four times higher. The spectral photoresponse of the other superlattice detector extended out well past 12 μm, compared to the less than 11 μm cutoff of the control. Contact John Dell at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!