OPTICAL MATERIALS: 'Quasiperfect' Si sphere is crucial to new measurement of Avogadro constant

March 1, 2011
The Avogadro project was started in 2003 by a consortium of measurement-standards laboratories.

The Avogadro project was started in 2003 by a consortium of measurement-standards laboratories. Its goal is to count the number of atoms in a kilogram; from this, many benefits ensue, from a more accurate determination of the Avogadro constant (the number of atoms in a mole of material), to tests of the consistency of atomic physics.

The group has announced the most precise measurement ever of the Avogadro constant.1 At the heart of the experiment was a dislocation-free boule of pure silicon (Si) enriched to at least 99.99% 28Si, and polished into two "quasiperfect" spheres by the Australian Centre for Precision Optics (see figure). Their diameters of about 93.6 mm had to be known to an accuracy of 0.6 nm, and measured in a controlled environment held to a temperature accuracy of 2 mK or better.

The concentration of pointlike defects and vacancies in the Si was measured by IR and positron-lifetime spectroscopy, and then accounted for in the calculations. The lattice parameter of the Si at many locations was measured with x-ray interferometry, showing no intrinsic strain in the Si. The sphere volumes were measured using two differential optical interferometers, both with Fizeau cavities—one with planar and the other with spherical mirrors. The measurements were corrected for phase shifts and retardations from the surface oxide layer on the Si arising from interactions with the air (surface layer was characterized using x-ray fluorescence and other methods). The molar mass was measured via mass spectrometer.

The resulting measurement of the constant was 6.02214078(18) × 1023 mol-1, with a relative uncertainty of 3 × 10-8.

To "reinvent" the definition of the kilogram in terms of fundamental constants, the consortium must reduce measurement uncertainty to 2 × 10-8 or below.

REFERENCE

1. B. Andreas et al., Physical Rev. Lett., 106, 030801 (2011).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!