OPTICAL MATERIALS: 'Quasiperfect' Si sphere is crucial to new measurement of Avogadro constant

March 1, 2011
The Avogadro project was started in 2003 by a consortium of measurement-standards laboratories.

The Avogadro project was started in 2003 by a consortium of measurement-standards laboratories. Its goal is to count the number of atoms in a kilogram; from this, many benefits ensue, from a more accurate determination of the Avogadro constant (the number of atoms in a mole of material), to tests of the consistency of atomic physics.

The group has announced the most precise measurement ever of the Avogadro constant.1 At the heart of the experiment was a dislocation-free boule of pure silicon (Si) enriched to at least 99.99% 28Si, and polished into two "quasiperfect" spheres by the Australian Centre for Precision Optics (see figure). Their diameters of about 93.6 mm had to be known to an accuracy of 0.6 nm, and measured in a controlled environment held to a temperature accuracy of 2 mK or better.

The concentration of pointlike defects and vacancies in the Si was measured by IR and positron-lifetime spectroscopy, and then accounted for in the calculations. The lattice parameter of the Si at many locations was measured with x-ray interferometry, showing no intrinsic strain in the Si. The sphere volumes were measured using two differential optical interferometers, both with Fizeau cavities—one with planar and the other with spherical mirrors. The measurements were corrected for phase shifts and retardations from the surface oxide layer on the Si arising from interactions with the air (surface layer was characterized using x-ray fluorescence and other methods). The molar mass was measured via mass spectrometer.

The resulting measurement of the constant was 6.02214078(18) × 1023 mol-1, with a relative uncertainty of 3 × 10-8.

To "reinvent" the definition of the kilogram in terms of fundamental constants, the consortium must reduce measurement uncertainty to 2 × 10-8 or below.

REFERENCE

1. B. Andreas et al., Physical Rev. Lett., 106, 030801 (2011).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!