Embedded microvoids improve LED output

April 1, 2011
Despite attempts to reduce dislocation densities in gallium nitride (GaN) epitaxial films grown on sapphire structures, dislocation densities on the order of 109 cm-2 still persist.

Despite attempts to reduce dislocation densities in gallium nitride (GaN) epitaxial films grown on sapphire structures, dislocation densities on the order of 109 cm-2 still persist. But a new technique from researchers at North Carolina State University (Raleigh, NC) to physically embed microvoids in epitaxial GaN films very close to the sapphire substrate layer can decrease dislocation densities to the 107 cm-2 range. These defect reductions can improve the light output by a factor of three for GaN-based LEDs.

A 2-to-3-μm-thick GaN film is first grown on a sapphire substrate via metalorganic chemical-vapor deposition (MOCVD). Next, GaN nanowires are created by etching this layer. Then, another layer of GaN is grown on top of the nanowires, trapping bubbles of air that create oval and vertically oriented microvoids a few microns long and less than a micron in diameter. As these voids are created at the nanowire locations near the interface of the sapphire substrate, they act as "sinks" or termination sites for any voids or dislocations that might occur during the growth process, effectively reducing the final number of defects. Contact Salah M. Bedair at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!