Continuous-wave 1550 nm laser light is frequency doubled at 95% efficiency

Sept. 1, 2011
Researchers at the Leibniz Universität Hannover (Hannover, Germany) have achieved a new efficiency high for the frequency doubling of continuous-wave laser light.

Researchers at the Leibniz Universität Hannover (Hannover, Germany) have achieved a new efficiency high for the frequency doubling of continuous-wave laser light. In the experiment, 1.10 W of light at a 1550 nm wavelength was externally doubled in a cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP), yielding 1.05 W of light at 775 nm, for a conversion efficiency of 95%. Aside from general use, the technique is suitable for low-decoherence frequency conversion of quantum states of light; the researchers’ interest is in quantum information experiments in which quantum information is mapped from one system to another.

A fiber laser produced the 1550 nm light, which passed through a mode-cleaning resonator and was mode-matched into an actively length-stabilized standing-wave cavity containing the PPKTP crystal. The plano-convex crystal was 1 × 2 × 9.3 mm3 in size and was antireflection coated on the plano surface and high-reflection coated on the curved surface, which served as a cavity mirror (the other cavity mirror was 24 mm away from the crystal and had a 25 mm curvature). The researchers believe that an efficiency of 98% can be reached, and that nonclassical states of light can be frequency doubled at a comparable efficiency.

Contact Roman Schnabel at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!