Scintillator crystals may improve radiation detectors

Sept. 1, 2011
Researchers at Wake Forest University (Winston-Salem, NC) and Fisk University (Nashville, TN) have analyzed the crucial role that electron and hole mobilities have in strontium iodide crystals doped with europium that are used as scintillators (often with photomultiplier tubes) to detect gamma radiation.

Researchers at Wake Forest University (Winston-Salem, NC) and Fisk University (Nashville, TN) have analyzed the crucial role that electron and hole mobilities have in strontium iodide crystals doped with europium that are used as scintillators (often with photomultiplier tubes) to detect gamma radiation. The results should lead to improved detection systems for screening cargo containers at ports, airports, and border crossings, as well as better radiation detectors for medical diagnostics.

Richard Williams of Wake Forest and his team used 500 fs pulses of light at a 210 nm wavelength to excite electron-hole densities of up to 2 × 1020 cm-3; the idea was to span the range of excitation densities produced along the track of an energetic electron in the scintillator crystal. The scintillation at each local excitation density encountered along the electron track was isolated and measured, leading to the knowledge that the effects of electron mobility affected the nonlinearity of the scintillation response. Strontium iodide is expensive, but the material already performs much better than the most affordable detectors currently used, say the researchers. They believe that with refinements to the fabrication process, crystals of the needed quality and size can be grown and produced affordably.

Contact Richard Williams at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!