Algorithm is faster than FFT for all sparse signals

Feb. 9, 2012
Researchers at the Massachusetts Institute of technology (Cambridge, MA) have developed two algorithms that are faster than the fast Fourier transform (FFT) for all sparse signals.

Being able to compute the Fourier transform of an input signal is crucial in photonics—for example, in determining the spatial frequencies in an image. The standard method of computing a discrete Fourier transform (DFT) is by using the fast Fourier transform (FFT) algorithm. However, algorithms faster than the FFT would be desirable. Researchers at the Massachusetts Institute of technology (Cambridge, MA) have developed two algorithms that are faster than the FFT for all sparse signals. (A sparse signal is one in which some of its Fourier coefficients are near enough to zero that they can be ignored.) While other algorithms have previously been developed to improve on the FFT for sparse signals, none of them have improved on the FFT’s runtime for the whole range of sparse signals.

For a signal with k nonzero Fourier coefficients, and a length n of the input signal that is a power of 2, the researchers show two new DFT algorithms. The first is an O(k log n)-time algorithm for the exactly k-sparse case (where k is small). (O means “on the order of.”) The second is an O(k log n log(n/k))-time algorithm for the general case. In contrast, the FFT computes the DFT in O(n log n) time. Contact Haitham Hassanieh at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!