Programmable optical processor achieves multichannel OTDM-to-WDM conversion

March 7, 2012
Scientists have created an optical time-division multiplexing (OTDM) to wavelength-division multiplexing (WDM) converter that handles multichannel conversion with flexibility in both time and wavelength domains, thus opening up the possibility of getting OTDM and WDM systems to work together in a straightforward manner.

Scientists at the Universidade de Aveiro (Aveiro, Portugal) and Nokia Siemens Networks Portugal (Amadora, Portugal) have created an optical time-division multiplexing (OTDM) to wavelength-division multiplexing (WDM) converter that handles multichannel conversion with flexibility in both time and wavelength domains, thus opening up the possibility of getting OTDM and WDM systems to work together in a straightforward manner. The converter relies on a so-called programmable optical processor (POP) to do its work.

Part of a 160 Gbit/s input data signal from an OTDM with N different signal “tributaries,” or channels, feeds a clock-recovery system, which provides a clean optical clock signal that is then split into N different wavelengths, with the resulting signal pulses (SPs) processed by the POP to suppress amplified-spontaneous-emission and other noise. Via four-wave mixing in a highly nonlinear optical fiber, the rest of the OTDM signal interacts with the multiwavelength sampling pulse train. The time delays and shapes of the SPs are controlled through adjusting the POP’s phase and amplitude function, respectively. An output tunable optical filter filters the resulting signals, producing a 4 × 40 Gbit/s WDM output. Error-free performance was achieved for all signals, with a maximum power penalty of 6.3 dB. Tweaking of the system parameters can further reduce the power penalty. Contact Miguel Drummond at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!