Inline diagnostic system measures laser weld depth

April 3, 2012
Queen’s University physicist and principal investigator James Fraser and doctoral candidate Paul Webster have solved a significant problem inherent in the use of lasers in automated industrial welding, drilling, and machining: The inability to effectively monitor the depth and quality of laser welds on the fly.

Queen’s University (Kingston, ON, Canada) physicist and principal investigator James Fraser and doctoral candidate Paul Webster have solved a significant problem inherent in the use of lasers in automated industrial welding, drilling, and machining: The inability to effectively monitor the depth and quality of laser welds on the fly. Their new inline coherent imaging (ICI) technique is a novel high-speed inline diagnostic system that can measure on-the-fly laser weld penetration depth with micron precision and microsecond speeds.

The all-optical depth measurement is made by axially combining a typically 850 nm sensing light-source beam (and the laser-machining beam along the same path and combining the resulting backscattered light from the weld pool with reference light in an interferometer. The resulting measured interference pattern is analyzed spectrally and the weld-depth data are computed from the absolute path mismatch between the two interferometer arms. Unlike triangulation approaches, ICI is able to obtain depth information from deep geometries without bulky optics. Since the detection is coherent and spectrally isolated from the welding beam, ICI unaffected by intense scatter, blackbody emissions, and momentary signal loss due to material expulsion. Queen’s University’s PARTEQ Innovations plans to commercialize the technology. Contact Stephen K. Adolph at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!