Yb:LuAG laser ceramic has efficient heat removal at high dopant concentrations

Oct. 9, 2012
A group at Nanyang Technological University (Singapore) has fabricated laser ceramics of Yb-doped lutetium yttrium aluminum garnet (Yb:LuAG) using a solid-state reactive sintering method, producing an almost pore-free microstructure for Yb doping levels of 5%, 10%, 15%, and 20% and a grain size of about 10 μm.

In the interest of developing a high-power ytterbium (Yb)-doped laser-gain medium that maintains a high thermal conductivity even when the Yb doping concentration is raised higher than 5%, a group at Nanyang Technological University (Singapore) has fabricated laser ceramics of Yb-doped lutetium yttrium aluminum garnet (Yb:LuAG) using a solid-state reactive sintering method, producing an almost pore-free microstructure for Yb doping levels of 5%, 10%, 15%, and 20% and a grain size of about 10 μm. The gain cross-section was measured under different population inversion ratios (β) over an 850 to 1100 nm spectral region (see figure).

The researchers used a 5%-doped sample 3 × 3 × 3 mm in size to create a laser that produced a continuous-wave output of 7.2 W at 1030 nm with a 65% slope efficiency. The sample was antireflection-coated and pumped at a 980 nm wavelength by a fiber-delivered laser diode. The researchers plan in the future to improve the cavity design, extract heat more efficiently, and further boost the doping concentration in combination with a shorter sample length. They note that the Yb:LuAG ceramic is a good candidate for use in high-power thin-disk lasers due to its high thermal conductivity and large emission cross-section of 2.7 × 10-20 cm2 at the 1030 nm emission peak. Contact Jian Zhang at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!