Fiber-optic Cerenkov radiation sensor gets dose for proton cancer therapy

July 3, 2012
Researchers at Konkuk University and the National Cancer Center are using the Cerenkov radiation produced in plastic fibers as a signal.

In proton therapy, a beam of protons is used to irradiate cancerous tissue, damaging its DNA and ultimately eliminating the cancer cells. Conventional dosimetry for proton therapy involves a scintillator, which is less than ideal because protons can temporarily damage (quench) the scintillator’s organic molecules; the result is that complicated formulas must be used to correct for the scintillator’s output errors. As an alternate approach, researchers at Konkuk University (Chungju, South Korea) and the National Cancer Center (Goyang, South Korea) are using the Cerenkov radiation produced in plastic fibers as a signal.

Cerenkov radiation occurs when a charged particle travels through a medium at a speed faster than the speed of light in the medium. It is not generated from scintillation, and is not quenched (in this case, it is actually generated by secondary electrons produced by the proton’s passage). The resulting fiber-optic Cerenkov radiation sensor, with the Cerenkov radiation measured by a photomultiplier tube, has a linear dose measurement as a function of dose, as determined using a 7-cm-diameter, 180 MeV proton beam measured at a depth of 15 cm in water (1 Gy = 1 J/kg). The researchers are working on using shorter lengths of fiber for higher spatial resolution, and note that the technique can be used for dosimetry of other heavy particles used in cancer therapy. Contact Bongsoo Lee at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!