Tessellation of moth-eye arrays drastically cuts backscattered diffraction

Feb. 8, 2013
Researchers at the University of Southampton in England are drawing from the geometry of natural moth eyes by creating hexagonal nanoscale arrays that have small regular areas with differing angular orientations that spatially distribute the diffraction orders.

Surfaces that mimic the eyes and wings of some moth species with arrays of nanoscale features can be used as optical antireflection (AR) coatings. However, the artificial arrays themselves are usually regular over large regions, leading to backscattered diffraction and iridescence. Researchers at the University of Southampton (Southampton, England) are further drawing from the geometry of natural moth eyes to reduce this diffraction: They are creating hexagonal nanoscale arrays that have small regular areas with differing angular orientations (for example, 0°, 15°, 30°, and 45°) that spatially distribute the diffraction orders.

The researchers photolithographically fabricated three types of moth-eye-array geometries in silicon: first, a single-orientation array; second, a tessellated array with four different orientations (24-fold optical symmetry); and third, a tessellated array with nine different orientations (54-fold optical symmetry). The resulting nanoscale pillars (with a period of about 250 nm) were not optimized in shape for AR qualities, but for easy detection and measurement of diffracted orders. A setup with a xenon light source, rotation stages, a fiber collector, and a spectrometer was used to analyze the scatter. Various types of data were taken (for example, scattered light intensity at a wavelength of 418 nm as a function of azimuth angle, as in the figure), showing that the tessellated versions drastically reduced the intensity of individual diffraction orders. Contact Petros Stavroulakis at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!