Random-lasing-based Raman fiber amplification is temperature-insensitive

April 3, 2013
A team of researchers has experimentally compared two forms of distributed Raman amplification (DRA) for fibers: one relying on random fiber lasers (RFLs) either forward- or backward-pumped, and the other based on the more-conventional bidirectional first- or second-order pumping.

Researchers at the University of Electronic Science & Technology of China and Sichuan Normal University (both in Chengdu, China) have experimentally compared two forms of distributed Raman amplification (DRA) for fibers: one relying on random fiber lasers (RFLs) either forward- or backward-pumped, and the other based on the more-conventional bidirectional first- or second-order pumping. All experiments were carried out on 93 km of standard singlemode fiber, with the effective noise figure (ENF) being the parameter of interest.

Bidirectional first-order pumping was done with a 1480 nm pump, while second-order pumping used a 1366 nm pump and two 1454 nm fiber Bragg gratings (FBGs) added to the fiber. The forward (or backward) random laser pumping was similar to the bidirectional second-order pumping, but with the removal of one FBG (or, for backward, the other FBG) to avoid facet feedback while lowering the lasing threshold. Random lasing occurs entirely through random Rayleigh distributed feedback and Raman amplification (no end mirrors are involved). Forward random pumping produced an ENF lower than that of the bidirectional first-order pumping and second-order pumping by 2.3 and 1.3 dB, respectively. Compared to bidirectional pumping, forward and backward random pumping had higher and lower gain, respectively. And, unlike bidirectional pumping, the random-lasing-based amplification was insensitive to variations in ambient temperature between -40 and +40°C. Contact Yun-Jiang Rao at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!