Fiber-pumped high-power mid-IR laser produces picosecond pulse bunches

Nov. 4, 2013
A high-power mid-infrared (mid-IR) fiber laser developed at Zhejiang University in China and based on quasi-synchronously pumping periodically poled magnesium-oxide doped lithium niobate (PPMgLN) achieves an average output power of 4 W at a 3.45 μm wavelength with a picosecond-pulse-bunch output.

A high-power mid-infrared (mid-IR) fiber laser developed at Zhejiang University (Hangzhou, China) and based on quasi-synchronously pumping periodically poled magnesium-oxide doped lithium niobate (PPMgLN) achieves an average output power of 4 W at a 3.45 μm wavelength with a picosecond-pulse-bunch output. The laser could be useful for environmental monitoring, missile countermeasures, and medical diagnostics.

In the system, light originates in a linearly polarized master-oscillator power-amplifier (MOPA) ytterbium (Yb)-doped fiber laser emitting at around 1060 nm and with a picosecond-pulse output. This light enters a circulator and passes through a fiber-Bragg-grating (FBG) reflector, which narrows the pulse from an 800 to a 50 ps duration and from a 9 to a 0.15 nm spectral full-width at half-maximum (FWHM). A pulse multiplier consisting of looped, cascaded fiber couplers bunch the pulses into groups of 13 subpulses, which are then amplified by two-stage Yb fiber amplifiers. The 85 W output pumps a PPMgLN-based optical parametric oscillator (OPO) through quasi-synchronization, producing the final 4 W picosecond-pulse-bunch mid-IR output. The researchers hope to optimize the cascaded loop lengths to better than 1 mm, which should further boost the OPO efficiency. Contact Yonghang Shen at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Achromatic Lenses: High-Quality Custom Optics

March 13, 2025
Ensure clarity and accuracy in your optics systems with Lacroix’s achromatic lenses. Explore how our custom solutions minimize chromatic aberration for perfect results.

Manufacturing Considerations for Tolerancing Aspheres

March 13, 2025
Understand the critical factors in manufacturing aspheres and how Lacroix Optics ensures precise tolerancing in every optical component.

Explore Our Videos: Insights into Precision Optics

March 13, 2025
Get an inside look at Lacroix Optics with our collection of informative videos showcasing our capabilities, innovations, and processes.

Optical Assemblies: Reliable and Precise Solutions

March 13, 2025
Ensure your optical system works seamlessly with Lacroix Optics' custom optical assemblies. Discover the precision and reliability we bring to every project.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!