Standoff Raman spectrometer identifies liquids in gas pipelines

March 30, 2015
A standoff Raman spectrometer allows sensing from 2.4 m away at standard 2-m-height standoff pipes in the network.

Natural gas is processed to remove water vapor, carbon dioxide, and hydrogen sulphide by injecting liquids into the gas stream. The liquids must then be removed from the natural gas before the gas is piped to its destination, or else the liquids can severely damage compressors and other parts of the gas transmission system. Such liquids must be rapidly and effectively detected and identified at transfer points in the gas distribution network. Engineers at IS-Instruments (Kent, England) and IMA (West Yorkshire, England) have developed a standoff Raman spectrometer for just this purpose, which allows sensing from 2.4 m away at standard 2-m-height standoff pipes in the network.

To contend with the weak nature of the Raman response, the group developed a high-etendue spectrometer that could collect as many photons as possible. The instrument, which is in a Michelson interferometer configuration (with gratings replacing the mirrors) with the probe light delivered to the gas pipe and the signal collected via optical fibers, forms a spatial fringe pattern that is Fourier-transformed to get the spectral information. Due to the design, the spectrometer has an etendue more than 100 times that of traditional dispersive systems. The researchers note that, unlike a conventional Fourier transform spectrometer, their device has no moving parts. The instrument was mounted 40 m away from the pipeline, with the optical fibers running to the measurement location. It was successfully tested against five different liquids: xylene, methanol, triethylene glycol, monoethylene glycol, and compressor oil, with liquid sample depths of 2 to 20 mm. The spectrometer is now ready for full integration onto an active pipeline. Reference: M. Foster et al., Opt. Express 23, 3 (Feb. 2015); doi: 10.1364/OE.23.003027.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!