'Transmitarray' flat metamaterial lenses have focusing efficiency of 82%

June 1, 2015
Researchers have created a metamaterial flat lens that has a focusing efficiency of 82% for light at a 1550 nm wavelength.
Content Dam Lfw Print Articles 2015 06 1506lfwnb3 Web

Flat lenses thinner than a wavelength can be constructed from optical metamaterials or gratings; however, their focusing efficiency and other performance qualities don’t approach those of conventional curved refractive lenses. Researchers at the California Institute of Technology (Caltech; Pasadena, CA) have created a type of metamaterial flat lens that has a focusing efficiency of 82% for light at a 1550 nm wavelength. The so-called “transmitarray” lens can be fabricated using industry-standard techniques for making computer chips.

The subwavelength-thickness, polarization-insensitive transmitarray lens consists of amorphous silicon nanoposts on fused silica. The varying phase delays that are needed to create a lens are achieved by varying the diameter of the posts as a function of their lateral distance from the optical axis. Lenses with diameters of 50 and 175 μm were fabricated, producing focal spots as small as 0.57 wavelengths full-width half-maximum (FWHM). As with most metamaterial or Fresnel-zone-plate lenses, the transmitarray lenses are monochromatic. Although the prototypes are currently expensive to manufacture, the use of nanoimprint lithography or industry-standard photolithography techniques would allow thousands to be made at once at low cost. Such lenses would benefit on-chip optical systems created by cascading multiple diffractive elements. Reference: A. Arbabi et al., Nature Commun., 6 (2015); doi:10.1038/ncomms8069.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!