3D Microscopy: Single-objective SPIM simplifies super-resolution 3D cell imaging

Sept. 16, 2015
A simplified super-resolution microscopy method can identify single proteins anywhere within a cell, and allows assessment of cellular organization in 3D.

A simplified super-resolution microscopy method can identify single proteins anywhere within a cell, and allows assessment of cellular organization in 3D.1

Recent advances have enabled super-resolution imaging of biological samples in 3D for extended periods without damaging the sample. This means that the activity of single proteins can be followed within individual cells, providing new insight into protein function and, importantly, how protein dysregulation can lead to disease. Unfortunately, these techniques are complicated and expensive, and most of those that enable single-molecule imaging capture images only within the first micrometer of the coverslip-whereas a typical human skin cell is 30 μm thick.

And while selective plane illumination microscopy (SPIM) enables 3D super-resolution imaging of thicker samples at a single-cell level, it requires a two-objective system and sample holder that is incompatible with standard microscopes. But an updated approach, called single-objective SPIM (soSPIM), requires just one objective. Developed by associate professor Virgile Viasnoff of the Mechanobiology Institute (MBI) at the National University of Singapore, soSPIM uses an array of micromirrored wells: Each mirror is inclined at precisely 45°, and serves as both a means to direct the excitation beam and to hold the sample. Together with a beam-steering add-on unit, these micromirrors enable the excitation beam and the fluorescence signal to pass through a single standard objective lens.

Compatible with standard inverted microscopes and high-numerical-aperture immersion objective lenses, soSPIM has exhibited fast response, good sectioning capability for 3D imaging of whole cells up to 30 μm above the coverslip, and the ability to identify single proteins deep within cells.

1. R. Galland et al., Nat. Methods, 12, 641-644 (2015); doi:10.1038/nmeth.3402.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!