3D Microscopy: Single-objective SPIM simplifies super-resolution 3D cell imaging

Sept. 16, 2015
A simplified super-resolution microscopy method can identify single proteins anywhere within a cell, and allows assessment of cellular organization in 3D.

A simplified super-resolution microscopy method can identify single proteins anywhere within a cell, and allows assessment of cellular organization in 3D.1

Recent advances have enabled super-resolution imaging of biological samples in 3D for extended periods without damaging the sample. This means that the activity of single proteins can be followed within individual cells, providing new insight into protein function and, importantly, how protein dysregulation can lead to disease. Unfortunately, these techniques are complicated and expensive, and most of those that enable single-molecule imaging capture images only within the first micrometer of the coverslip-whereas a typical human skin cell is 30 μm thick.

And while selective plane illumination microscopy (SPIM) enables 3D super-resolution imaging of thicker samples at a single-cell level, it requires a two-objective system and sample holder that is incompatible with standard microscopes. But an updated approach, called single-objective SPIM (soSPIM), requires just one objective. Developed by associate professor Virgile Viasnoff of the Mechanobiology Institute (MBI) at the National University of Singapore, soSPIM uses an array of micromirrored wells: Each mirror is inclined at precisely 45°, and serves as both a means to direct the excitation beam and to hold the sample. Together with a beam-steering add-on unit, these micromirrors enable the excitation beam and the fluorescence signal to pass through a single standard objective lens.

Compatible with standard inverted microscopes and high-numerical-aperture immersion objective lenses, soSPIM has exhibited fast response, good sectioning capability for 3D imaging of whole cells up to 30 μm above the coverslip, and the ability to identify single proteins deep within cells.

1. R. Galland et al., Nat. Methods, 12, 641-644 (2015); doi:10.1038/nmeth.3402.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!