Cell Imaging/Cell Analysis: EUV-enabled spectrometry images cells in 3D at nanoscale

Feb. 17, 2016
Researchers at Colorado State University (Fort Collins, CO) have developed a spectral imaging instrument that maps cellular composition in 3D at the nanoscale.

Researchers at Colorado State University (Fort Collins, CO) have developed a spectral imaging instrument that maps cellular composition in 3D at the nanoscale.1 The system allows study of cells at approximately 100% greater detail than previously possible, enabling observation of cell response to drugs.

The researchers explain that earlier laser-based mass-spectral imaging could identify the chemical composition of a cell and could map its surface in 2D at the microscale, but could not chart cellular anatomy in nanoscale or in 3D.

The instrument features a laser able to produce a hot, dense plasma stream that acts as a gain medium for generating extreme ultraviolet (EUV) pulses. When properly focused, the laser drills a tiny hole into a cell sample, enabling ions to evaporate from the cell surface. These ions can be separated and identified to determine chemical composition, and used to chart the anatomy of a cell.

1. I. Kuznetsov, NatureCommun., 6, 6944, doi:10.1038/ncomms7944 (2015).

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!