Cavity ring-down measures AR and HR laser coatings to sub-ppm precision

April 10, 2017
Researchers have come up with a different approach for measuring laser optics parameters using a two-channel cavity ring-down setup for measurement.

The Laser Interferometer Gravitational-Wave Observatory (LIGO), laser gyroscopes, and certain forms of laser spectroscopy all share the need for laser optics with very highly reflective (HR) or antireflective (AR) coatings. However, measuring the transmission and reflectance of such coatings is done using traditional spectrophotometry or laser ratiometric techniques, which have difficulty measuring residual transmittance of HR coatings or residual reflectance of AR coatings to better than 0.01%, or 100 parts per million (ppm)—when sub-ppm accuracy is sometimes needed. Researchers at the University of Electronic Science and Technology of China and the Chinese Academy of Sciences (both in Chengdu, China) have come up with a different approach for measuring reflection (R), transmission (T), and optical loss (L) parameters of high-performance laser optics using a two-channel cavity ring-down (CRD) setup for measurement. The setup allows for mapping as well as single-point measurement of either reflection or transmission (L is determined by subtracting T and R from 1).

For measurement, the optic to be tested is placed in one of the two channels. Two ring-down measurements, one in each channel, are recorded at the same time (any DC offsets of the photodetectors are eliminated by fitting the ring-down signals to an exponential function). For an HR mirror with a 4 ppm transmittance, the measured R, T, and L at a single point were 99.99821 ± 0.00004%, 4.042 ±0.008 ppm, and 13.9 ±0.4 ppm, respectively. For an AR sample, the measured T, R, and L at a single point were 99.99279 ±0.00004%, 50.0 ±0.7 ppm, and 22.0 ±0.4 ppm. The low standard deviations for the measurements show the high accuracy of the technique. Reference: H. Cui et al., Opt. Express (2017); https://doi.org/10.1364/OE.25.005807.

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!