Femtosecond optical vortices are close to perfect

Aug. 9, 2017
Researchers have completely bypassed the problems created by the use of dispersive optics to create femtosecond optical vortices.
Content Dam Lfw Print Articles 2017 08 1708lfw Nb F2

Optical vortices, or laser modes that have angular momentum, creating (for example) a null at the center of the beam, have been used for optical trapping and other purposes. While they are most well-known in their continuous-wave (CW) form, optical vortices can be created using pulses from femtosecond lasers, leading to applications such as subwavelength nonlinear microscopy, femtosecond materials microprocessing, and the creation of laser filaments in air. However, because of the wide spectral bandwidth of a femtosecond laser, it is difficult to produce clean femtosecond optical vortices using the usual phase-based (such as a spiral phase plate) or diffractive optical element, with “clean” meaning a high ring-to-center spatial-intensity contrast.

A group of researchers from Shanghai Jiao Tong University (Shanghai, China), Jiangsu Normal University (Xuzhou, China), Tongji University (Shanghai, China), and Shenzhen University (Shenzhen, China) has completely bypassed the problems created by the use of dispersive optics to create femtosecond optical vortices. The researchers have instead developed a high-order-transverse-mode femtosecond laser that, in combination with a cylindrical-lens mode converter, produces the desired vortex beam. The laser uses a solid semiconductor saturable absorber mirror (SESAM) as a mode-locker, producing a femtosecond Hermite-Gaussian (HG) beam converted by the cylindrical lens into a clean Laguerre-Gaussian (LG) vortex beam. A 793-nm-emitting laser diode (LD) pumps a 9-mm-long, 2-μm-emitting thulium-doped calcium yttrium aluminate (Tm:CYA) mode-locked laser crystal in a noncollinear-pump configuration. The optical train includes a number of lens (L) and mirror (M) elements, calcium fluoride (CaF2) prisms to compensate for group-delay dispersion, and an output coupler (OC). The resulting femtosecond vortex has a ring-to-center intensity contrast of 36 dB, which the researchers say is close to the theoretical limit of an ideal vortex beam. Reference: Z. Qiao et al., Opt. Lett. (2017); https://doi.org/10.1364/ol.42.002547.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!