New polarimeter from Capasso's lab at Harvard can be integrated on a chip

Jan. 10, 2016
Performance of the metasurface device matches that of commercial polarization-measuring instruments.

Researchers at the Harvard University John A. Paulson School of Engineering and Applied Sciences (SEAS; Cambridge, MA) and Innovation Center Iceland (Reykjavík, Iceland) have built a polarimeter on a microchip, revolutionizing the design of this widely used scientific tool.1


"We have taken an instrument that is can reach the size of a lab bench and shrunk it down to the size of a chip," says Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, who led the research. "Having a microchip polarimeter will make polarization measurements available for the first time to a much broader range of applications, including in energy-efficient, portable devices."

Harvard's Office of Technology Development has filed a patent application and is actively exploring commercial opportunities for the technology.

Capasso's team fabricated a two-dimensional metasurface covered with a thin array of metallic subwavelength antennas embedded in a polymer film. When light fed to the device via optical fiber illuminates the array, a small amount scatters in four directions. Four detectors measure the intensity of the scattered light and the information is combined to give the state of polarization in real time.

"One advantage of this technique is that the polarization measurement leaves the signal mostly intact," says J. P. Balthasar Mueller, a graduate student in the Capasso lab. "This is crucial for many uses of polarimeters, especially in optical telecommunications, where measurements must be made without disturbing the data stream."

"The design of the antenna array makes it robust and insensitive to the inaccuracies in the fabrication process, which is ideal for large scale manufacturing," says Kristjan Leosson, senior researcher and division manager at the Innovation Center and coauthor of the paper.

Leosson's team in Iceland is currently working on incorporating the metasurface design from the Capasso group into a prototype polarimeter instrument.

The research was funded by the Air Force Office of Scientific Research and the Icelandic Research Fund.

Source: http://www.eurekalert.org/pub_releases/2016-01/hjap-nmr010716.php

1. J. P. Balthasar Mueller et al., Optica (2016); doi: 10.1364/OPTICA.3.000042

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!