Velodyne announces a solid-state lidar

April 20, 2017
The Velodyne package measures 125 mm by 50 mm by 55 mm—small enough to be embedded into the front, sides, and corners of vehicles.
Velodyne today announced a solid-state automotive lidar ranging system that the company will demonstrate in a few months, release in test kits later this year, and mass produce at its new megafactory in San Jose, Calif., in 2018. The estimated price per unit is in the hundreds of dollars.

The company hopes to nail down the dominance it has enjoyed ever since pioneering automotive lidar a dozen years ago.

The Velodyne package measures 125 mm by 50 mm by 55 mm (about 5 by 2 by 2 inches)—small enough to be embedded into the front, sides, and corners of vehicles. Such a setup can give theater-in-the-round coverage even though each device covers only 120 degrees horizontally. They also span 35 degrees vertically, which comes in handy when climbing hills.
The Laser Focus World take:

Ferment in the lidar market continues and we've reported on it at length. Earlier this week lidar startup Luminar entered the autonomous vehicle market after five years in stealth mode.

For more on the technologies, designs, and players, read our coverage in this article by senior editor Gail Overton: Lidar nears ubiquity as miniature systems proliferate




About the Author

Conard Holton

Conard Holton has 25 years of science and technology editing and writing experience. He was formerly a staff member and consultant for government agencies such as the New York State Energy Research and Development Authority and the International Atomic Energy Agency, and engineering companies such as Bechtel. He joined Laser Focus World in 1997 as senior editor, becoming editor in chief of WDM Solutions, which he founded in 1999. In 2003 he joined Vision Systems Design as editor in chief, while continuing as contributing editor at Laser Focus World. Conard became editor in chief of Laser Focus World in August 2011, a role in which he served through August 2018. He then served as Editor at Large for Laser Focus World and Co-Chair of the Lasers & Photonics Marketplace Seminar from August 2018 through January 2022. He received his B.A. from the University of Pennsylvania, with additional studies at the Colorado School of Mines and Medill School of Journalism at Northwestern University.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!