3D solar cells generate up to 20 times more energy

May 11, 2012
Flat-panel solar photovoltaic (PV) designs benefit tremendously from tracking hardware; however, such hardware increases installation costs and cost per watt—especially for residential installations.

Flat-panel solar photovoltaic (PV) designs benefit tremendously from tracking hardware; however, such hardware increases installation costs and cost per watt—especially for residential installations. An alternative to tracking is a newly designed 3D solar configuration from the Massachusetts Institute of Technology (MIT; Cambridge, MA). While the 3D PV design increases the required flat-panel area, the PV panels themselves are often the lowest-cost component in a solar installation.

Using standard Monte Carlo simulations and genetic algorithms, a series of triangular structures was arranged to optimize energy density by minimizing cell shading and maximizing the re-absorption of light reflected by surrounding cells. The result was a series of structures—an open cube (one- and two-level) with panels both inside and outside as well as a ridged tower structure—that increased energy generation by 2 to more than 20 times that of a flat, untracked panel of the same base area, respectively. The increase is primarily due to the ability to harvest energy over a longer time period during the day, especially when the sun is at lower elevation angles. Due to the enhanced ability to collect diffuse and scattered light, 3D PV structures can also generate more power during cloudy weather compared to flat panels. Other 3D designs such as an open-flower structure are being developed using biomimetic principles to further increase energy generation. Contact Jeffrey C. Grossman at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!