Simple shearing interferometer measures wavefront of femtosecond laser pulses

July 13, 2018
A beamsplitter cube with one wedged entrance face produces an almost zero path-length difference for shearing interferometry.

Using an interferometer to characterize the spatial information of a continuous-wave (CW) laser beam can be done straightforwardly using a shearing interferometer, where the test wavefront is interfered with a positionally shifted duplicate of itself. However, measuring ultrafast laser pulses using this method is more difficult, because, given the short duration of a femtosecond pulse, traditional interferometers lose their functionality.

"A simple interferometer like the shear plate, where the beams reflected from the front and back surfaces interfere, no longer works," says, Chunlei Guo, a professor of optics at the University of Rochester (Rochester, NY).

Now, Guo and his associate, Billy Lam, have come up with a simple shearing-interferometer setup that works well with ultrafast pulses of sub-100-fs duration.1 In fact, the setup can characterize amplitude, phase, polarization, wavelength, and duration of the pulse.

The interferometer contains a single beamsplitter cube with one wedged entrance face, producing an almost zero path-length difference between unsheared and sheared beams, and a very stable interference pattern.

Source: http://www.rochester.edu/newscenter/interferometer-optics-measuring-light-beam-328182/

REFERENCE:
1. Billy Lam and Chunlei Guo, Nature Light: Science and Applications (2018); https://doi.org/10.1038/s41377-018-0022-0

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!