When optically pumped from afar, tiny rhodamine-doped lasing domes serve as remote wall-mounted temperature sensors

July 31, 2014
Two researchers at the Microsystems Research Laboratory of Southern Methodist University (Dallas, Texas) have created very small (110-μm-diameter) dome-shaped doped optical resonators that, when optically pumped remotely by a Q-switched Nd:YAG laser, lase and emit a comb spectrum that shifts depending on the temperature of the dome.

Two researchers at the Microsystems Research Laboratory of Southern Methodist University (Dallas, Texas) have created very small (110-μm-diameter) dome-shaped doped optical resonators that, when optically pumped remotely by a Q-switched Nd:YAG laser, lase and emit a comb spectrum that shifts depending on the temperature of the dome.1

This means that the miniature sensors can be stuck onto walls or any other remote location, allowing the temperature of the location to be easily monitored from afar. The spectral shift is about 0.06 nm/°C, leading to a resolution of 1°C (the resolution was limited by the experimental setup and can be improved in the future).

Made of doped optical adhesive

The domes themselves are made of a Norland (Cranbury, NJ) UV-curing optical blocking adhesive doped with a solution of rhodamine 6G and ethanol. The researchers created two types of domes, both by depositing a 50 μm drop of the adhesive-based solution on a layer of PDMS polymer: the first type had no added covering layer, while the second type had an additional thin layer of PDMS deposited on top.

The spectral comb spanned about 5 nm with 7 to 9 comb teeth, and was centered at about 593 nm for the embedded dome, and 597 nm for the bare dome. Both types of domes achieved similar temperature-measurement resolutions. Because the sensitivity is not a function of the microlaser's configuration, the temperature sensors don't require any calibration as long as the thermo-optic coefficient of the resonator is known.

According to the researchers, the ratio between the largest and the smallest measurable value of temperature, or the dynamic range, is about 10, but decreasing the size of the domes to 10 μm could increase the dynamic range to 100.

The sensor itself is flexible, potentially enabling temperature measurements on surfaces that flex, the researchers add.

REFERENCE:

1. Tindaro Ioppolo and Maurizio Manzo, Applied Optics (2014); http://dx.doi.org/10.1364/AO.53.005065

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!