'Tamper-proof' anticounterfeit hologram is sculpted by UV laser directly into metal

April 8, 2016
Holograms can depict, via diffraction, alphanumeric characters or logos.
(Image: Heriot-Watt University)
Shown is the surface profile of a small fragment (0.11 by 0.08 mm) of the holographic structure that was generated on the surface of a 304-grade stainless steel. The surface profile was measured using a Zygo white-light interferometer. The top left hand image shows the height map of the holographic structure, while the top right hand window shows its 3D surface profile. The middle left-hand window shows the cross-section (surface profile) of the hologram pixels (craters) taken along the line shown in the top left hand image. The middle-right image is the intensity map of the structure.
Shown is the surface profile of a small fragment (0.11 by 0.08 mm) of the holographic structure that was generated on the surface of a 304-grade stainless steel. The surface profile was measured using a Zygo white-light interferometer. The top left hand image shows the height map of the holographic structure, while the top right hand window shows its 3D surface profile. The middle left-hand window shows the cross-section (surface profile) of the hologram pixels (craters) taken along the line shown in the top left hand image. The middle-right image is the intensity map of the structure.

A tamper-proof hologram that is scribed directly into metal or glass using an ultraviolet (UV) nanosecond-pulsed laser is being developed that could replace serial numbers and barcodes, reducing the trade in counterfeit goods.1

Manufacturers of high-value goods such as electronics and aviation parts etch serial numbers into products, use bar codes, or place polymer holographic stickers on the items to provide identification and traceability of products and to assure customers of quality. However, serial numbers and bar codes can be damaged and stickers are vulnerable to tampering and counterfeiting.

Scientists led by Duncan Hand at Heriot-Watt University (Edinburgh, Scotland) are using the UV laser to sculpt holograms with microsized features directly onto the surface of metal parts, making the holograms tamper-proof.

Individual laser pulses provided at a rate of a few kilohertz (see figure) melt the surface in a precise, localized way to produce optically smooth impressions on the metal. By manipulating the laser beam to create specific patterns, holographic structures are produced that can act as security markings for high-value products and components.

"The holograms are visible to the naked eye and appear as smooth, shiny textures," says Krystian Wlodarczyk, one of the researchers. "They’re robust to local damage and readable by using a collimated beam from a low-cost, commercially-available laser pointer, so border agencies or consumers won't need expensive technology to check an item’s authenticity. Actually, the holograms can also be read even using a 'flashlight' from a smart phone. We've established that we can create the holograms on a variety of metals. We’re now investigating how to make them even smaller and more efficient and whether we can apply them to other materials. Recently, for instance, we have extended the process for use of such holograms on glass."

The holograms can generate diffractive images containing alphanumeric characters or logos: the structure of the hologram is generated by either melting or a combination of melting and evaporation, with submicron depth control of the hologram's individual pixels.

The shape and geometry of the hologram pixels are important because they affect the optical performance of the holographic structure. To obtain the maximum efficiency (contrast) of the diffractive image produced by the hologram, the pixels must have a certain depth and, ideally, a flat optically smooth base.

The research was funded by the ESPRC.

Source: Heriot-Watt University

REFERENCE:
1. Krystian L. Wlodarczyk et al., Journal of Materials Processing Technology (2016); doi:10.1016/j.jmatprotec.2015.03.001

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Electroplating 3D Printed Parts

Jan. 24, 2025
In this blog post, you'll learn about plating methods to enhance the engineering performance of resin micro 3D printed parts.

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!