New DoD, AIM Photonics partnership to create sensors for photonic systems

March 30, 2017
Photonic sensors will be developed for environmental monitoring, disease diagnosis, chemical and biological weapons detection, and food safety.

The U.S. Department of Defense (DoD) will fund researchers developing photonic sensors for applications such as environmental monitoring, disease diagnosis, chemical and biological weapons detection, and food safety. The $900,000 project will be supported by $1.41 million in funds from the American Institute for Manufacturing Integrated Photonics (AIM Photonics) industrial members led by the University of Rochester. The consortium includes the U.S. Army, U.S. Navy Research Lab, Ortho-Clinical Diagnostics, Analog Photonics, the University of Tulsa, PhoeniX, the University of California-Santa Barbara, and OndaVia.

“Sensors represent the interface between the real world and data,” said Ben Miller, the principal investigator of the project. “Developing a universal set of protocols to design, manufacture, modify, and integrate sensors into photonics systems will not only advance this technology, but also present a tremendous economic opportunity—integrated photonics sensors represent a large and rapidly growing market, potentially reaching more than $15 billion globally by 2020.”

Miller is a professor in the University of Rochester Departments of Dermatology and Biomedical Engineering and the Institute of Optics. He is also the academic lead of the AIM Photonics Sensors Key Technology Manufacturing Area. The project will focus on developing manufacturing blueprints for photonics-based transducers—the part of the sensor that interacts with what is being detected so that these components can be mixed and matched by manufacturers to build systems that identify a wide range of chemical or biological targets.

The project will involve close collaboration between government, academic, and industry researchers and engineers. The work to model, design, and fabricate the sensor components will be performed at the new AIM Photonics Testing, Assembly, and Packaging facility at Eastman Business Park in Rochester, the University of Rochester Medical Center, and SUNY Polytechnic Institute.

Source: University of Rochester Medical Center

About the Author

Conard Holton | Editor at Large

Conard Holton has 25 years of science and technology editing and writing experience. He was formerly a staff member and consultant for government agencies such as the New York State Energy Research and Development Authority and the International Atomic Energy Agency, and engineering companies such as Bechtel. He joined Laser Focus World in 1997 as senior editor, becoming editor in chief of WDM Solutions, which he founded in 1999. In 2003 he joined Vision Systems Design as editor in chief, while continuing as contributing editor at Laser Focus World. Conard became editor in chief of Laser Focus World in August 2011, a role in which he served through August 2018. He then served as Editor at Large for Laser Focus World and Co-Chair of the Lasers & Photonics Marketplace Seminar from August 2018 through January 2022. He received his B.A. from the University of Pennsylvania, with additional studies at the Colorado School of Mines and Medill School of Journalism at Northwestern University.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!